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Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg—de Vries equation
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A Darboux transformation for the generalized Hirota-Satsuma coupled Korteweg—de Vries (KdV) equation
is derived with the aid of the gauge transformation between the corresponding 4 X 4 matrix spectral problems
with three potentials, by which some explicit solutions of the generalized Hirota-Satsuma coupled KdV equa-
tion are constructed. As a reduction, a Darboux transformation of the complex coupled KdV equation and its

explicit solutions are obtained.
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I. INTRODUCTION

In Ref. [1], a hierarchy of coupled nonlinear evolution
equations was proposed with the help of a 4 X 4 matrix spec-
tral problem with three potentials, which contains among its

members a  generalized  Hirota-Satsuma  coupled
Korteweg—de Vries (KdV) equation
1
u;= E(uxxx - 6Mux) + 3(Uw)xv
U; == Uy + 3uv,,
W, == W + 3uw,. (1)

It is shown that the hierarchy of coupled nonlinear evolution
equations possesses the generalized Hamiltonian form. Fur-
ther, a Miura transformation related to the generalized
Hirota-Satsuma coupled KdV equation and its reductions are
derived, from which some coupled modified KdV equations
are obtained. Equation (1) is reduced to the complex coupled
KdV equation with w=v" (complex conjugate),

1
U= E(Mxxx - 6“”)() + 3(|v|2)x’

U;=— Uyyy + 3UD,, (2)

where the potential u is a real function and the potential v is
a complex function, and the Hirota-Satsuma coupled KdV
equation with w=v, which describes an interaction of two
long waves with different dispersion relations [2,3]. The gen-
eralized Hirota-Satsuma coupled KdV equation has been
studied by many authors. Some explicit solutions of Eq. (1),
which include soliton solutions, periodic solutions, and other
ones, were constructed by various approaches, for example,
the tanh-function method [4], Jacobi elliptic function method
[5], the algebraic method [6], Adomians decomposition
method [7], the homotopy perturbation method [8], and oth-
ers [9-12].

It is known that Darboux transformation is a powerful
tool for solving soliton equations [13—17]. The aim of the
present paper is to construct a Darboux transformation for
the generalized Hirota-Satsuma coupled KdV equation with
the aid of a gauge transformation between the corresponding
4 X4 matrix spectral problems with three potentials, by
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which some explicit solutions of the generalized Hirota-
Satsuma coupled KdV Eq. (1) are given. As a reduction, a
Darboux transformation of the complex coupled KdV Eq. (2)
and its explicit solutions are obtained. A systematic algebraic
procedure is given in detail to solve the generalized Hirota-
Satsuma coupled KdV equation. The present paper is orga-
nized as follows. In Sec. II, we shall construct a Darboux
transformation of the generalized Hirota-Satsuma coupled
KdV equation resorting to the gauge transformation between
4 X 4 matrix spectral problems. In Sec. III, a Darboux trans-
formation of the complex coupled KdV Eq. (2) is discussed
through the reduction technique. Furthermore, in Sec. IV,
some explicit solutions of the generalized Hirota-Satsuma
coupled KdV Egq. (1) and the complex coupled KdV Eq. (2)
are derived by the application of their Darboux transforma-
tions.

II. DARBOUX TRANSFORMATION OF THE
GENERALIZED HIROTA-SATSUMA COUPLED KDV
EQUATION

In this section, we shall construct a Darboux transforma-
tion for the generalized Hirota-Satsuma coupled KdV Eq.
(1), which comes from the condition of the compatibility for
the 4 X 4 matrix spectral problem with three potentials

X:=U(s,N)x (3)

and an auxiliary problem

X =V(s;Mx, 4)

where N is a constant
=(X1,Xz,X3,X4)T,S=(u,U,W),aIld

spectral ~ parameter, x
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In fact, a direct calculation shows that the zero-curvature det T=(\2— )\%)()\2 _ }\g)- )

equation, U,—V +[U,V]=0, implies the generalized Hirota-
Satsuma coupled KdV Eq. (1).

To construct a Darboux transformation of the generalized
Hirota-Satsuma coupled KdV Eq. (1), we assume that ¢!
=\, V), ¢V, $")T 1=1=4, are four linearly indepen-
dent solutions of Egs. (3) and (4), and use them to define a
fundamental matrix of solutions ®=(¢V, ¢?, $3, p¥).
Now we introduce a gauge transformation for the spectral

problems (3) and (4), ® — P:

O =TD (5)
with
T
a+\ b d 0
c —a+A\ 0 —-d
N\ a,+du+nd dv +b, a+d.+\ b
-dw+c, -—a,—du+NMNd c —a—-d,+\
(6)

where a,b,c, and d are determined later. Multiplying the first
row and the second one in the determinant det 7 by —d and
adding them to the third row and the fourth one, respectively,

yield det T=det(N—T), where T is a 4 X 4 matrix indepen-
dent of \. Through tedious calculations, we obtain

det T=N\*+f N>+ /5 (7)

with

>

A

T, o
. f2 =detT.

A

fr= 2|
I=i<j=4 Tj[» Tjj

Let \;,\,(A3 # \3) be two arbitrary given parameters and be

the roots of fourth-order polynomial det7, that is

It is easy to see that the column vectors {¢'"), 2, ), p¥)}

of ® are linearly dependent as A=\; (j=1,2). Therefore,
there exist constants r,({’) (in which a constant is at least not
zero) such that

' D) + PPN + Y D) + Y D () = 0.

Substituting every column vector of Eq. (5) into the above
equation, a direct calculation gives rise to a linear algebraic
system

a+\;+ UY)b+ ag)dzo,

c+(—a+)\j)0'(|j)—0'gj)d=0, 9)
and

ag+du+Nd+o(dv+b,)+ 0 (a+d,+\) +ab=0,

(—dw+c,)+ O'&i)(— a,—du+\d)+ Ug)c + a'gj)(— a—d.+\))
=0, (10)
with (j=1,2)
- B0 =) = A0 ) - P g0
L) -0 =0 - B0

1995 0n) = L' 45" ()
A0 - A0

o9 = B0 =P BP0 = 1P HI0) = 1P H0)
A0 =P = P ) - Y P (N)
(11)

where rg)=—1 is taken for the sake of simplicity. Then Eq.
(9) implies Eq. (10). In fact, differentiating the first expres-
sion of Egs. (9) and (11) with respect to x, substituting the

i B0 =0 -
T )=y -
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latter into the former yields the first expression of Eq. (10)
with the help of Eq. (3) through tedious calculations. Simi-
larly, we have the second expression of Eq. (10).

Assume that parameters \; and r,Ei) (j=1,2) are suitably
chosen such that the determinant of the coefficients for Eq.
(9) is nonzero. Then a,b,c, and d are uniquely determined
by the linear algebraic system (9).

Let us consider a linear transformation

x=Tx, (12)

from which Egs. (3) and (4) are transformed into two 4 X4
matrix spectral problems of ¥ in the case A # \; as follows:

X:= UGNX, (13)

X: = V(ENX, (14)

where 5=(it,0,w),

U=(T,+TU)T"', V=(T,+TV)T". (15)

It turns out that A=\; are removable isolated singularities of

U and V (see below). Therefore, we can define U and V for
all A #0 by analytic continuation.

Proposition 1. The matrices U(5,\) and V(3,\) deter-
mined by Eq. (15) have the same forms as U(s,\) and
V(s,N), respectively, where the transformation formulae
from original potentials u,v,w into new ones are given by

u=u+2d,,
v=v-2b,
w=w+2c. (16)

In fact, let 7-'=T7"/det T, which is a known formula of
the inverse matrix, and

(Tx + TU)T* =F= [.fsl()\)]4><4’ (Tl+ T‘/)Tﬁ< =G
=[ga(M]axa, (17)

where T* stands for the adjugate matrix of T, every element
of the matrix 7" is an algebraic cofactors of matrix 7. Using
Eq. (11) and the spectral problem (3) with A=N\;(j=1,2), we
can obtain the first-order differential equations of a’}j), (1
=1,2,3), with respect to x. A direct calculation shows that
fa(\) and gy(\) are polynomials of A. Based on these facts,
we can verify the proposition through tedious calculations.

According to proposition 1, the transformation, Egs. (12)
and (16), maps the Lax pair (3) and (4) into another Lax pair
of the same type:

X = UMY, (18)

X:= VENX. (19)

Therefore, both of the Lax pairs lead to the same generalized
Hirota-Satsuma coupled KdV Eq. (1). The transformation
(16), (u,v,w)— (it,0,w), is called a Darboux transformation
of the generalized Hirota-Satsuma coupled KdV Eq. (1).
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Proposition 2. Every solution (u,v,w) of the generalized
Hirota-Satsuma coupled KdV Eq. (1) is mapped into a solu-
tion (iz,v,w) of Eq. (1) under the Darboux transformation
(16), in which a,b,c,d are uniquely determined by Eq. (9).

For the sake of clarity, here we shall describe briefly the
procedure of the construction for the Darboux transformation
and explicit solutions of the generalized Hirota-Satsuma
coupled KdV Egq. (1):

(i) Choose a known solution of Eq. (1). Usually we
choose a trivial solution for simpleness.

(ii) Substitute the known solution into Lax pair (3) and (4)
and construct a fundamental matrix of solutions .

(iii) Using Eq. (11) and the fundamental matrix of solu-
tions ®, we construct O'l(i). Substituting o-l(") into Eq. (9), then
the linear algebraic system (9) uniquely determines functions
a,b,c and d. Here we require that parameters A ; and r,(") be
suitably chosen such that the determinant of the coefficients
for Eq. (9) and the denominators of Eq. (11) are nonzeros.

(iv) Substituting the above determined functions a,b,c,d
into Egs. (6) and (16) yields the Darboux matrix 7 and a
solution of Eq. (1), respectively, by using propositions 1 and
2. This process can be done continually and will usually
yield a series of solutions.

III. REDUCTION OF THE DARBOUX TRANSFORMATION

In this section, we will discuss a reduction of the Darboux
transformation (16), by which a Darboux transformation of
the complex coupled KdV Eq. (2) is given. Equation (9) can
be rewritten as

a+ U(ll)b + (7(21)(1 =—\,
a+ 0'(12)1) + 0'(22)d =-N\,,
a'(ll)a -c+ crgl)d= )\10'(11),

(2)

oPa-c+dPd=n0, (20)

which imply by the Cramer law that

a=8, p=8 =8 48 (21)
8 8 8 8
where
1 0'(]]) 0 (7(21)

2 2
1 0'(1) 0 0(2)

§= cr(ll) 0o -1 0(31) ’
(7(12) 0 -1 0'(32)
—)\1 0,(11) 0 0'(21)
N 0?0 o
81=

MoV oo -1 G
Mol 0 -1 o
1 -x 0 o
1 =N\, 0 %
0'(11) )\10'(1]) -1 O'g])

0'(12) )\20'(12) -1 (2)

82=
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1 2) - )\2 (7(22)
& 0'(]1) 0 )\10(1) O'gl) ’
0(12) 0 N0 (ng)

1 107

d? 0 -1 Mo
Here we assume that the parameters
)\1,)\2, (1) 52),r(22),r(32) are suitably chosen so that

the determmant of coefficients g # 0. Substituting Eq. (21)
into Eq. (16) we arrive at the explicit form of the Darboux
transformation:

7= u+2(g4), T=0-252 w=w+28. (22
. g

g 4

In the following, we shall derive a Darboux transforma-
tion of the complex coupled KdV Eq. (2) through the reduc-
tion technique. Under the condition w=v", it is easy to verify
that

[65" (= ), 7" (= N, @ (= N, ¢ (= NI, (= 1,2),
is another solution of Egs. (3) and (4) if

[P (N), 65N, 6 (N, 69N = 1,2),

is a solution of Egs. (3) and (4), by which we obtain a fun-
damental matrix of solutions

00N PN =N BP0
%) PN =N FPT=N)

P PN @ (=N SPH(=0Y)
”O\) R OV S GO I S CP

Then we have the following assertion.

Proposition 3. The restricted condition w=v™ is invariant
under the Darboux transformation (22) with the fundamental
matrix of solutions (23) and parameters:

(23)

# 3 *
N==ALON # 2N, E:—r(ﬁ),
2

(1)) r )=

ryry =1, ()——r3 .

)

This means that the first two formulae in Eq. (22) are a

Darboux transformation for the complex coupled KdV Eq.
(2) under the above assumption condition.

In fact, we obtain by using Eqgs. (11) and (23) and noticing

the special choice of parameters that
0'(11)0'(12)* =1, 031)052)* = 0'51), 0'(12)0'(31)* = 0'(22). (24)

With the help of Eq. (24) and \,=—\], the result in proposi-
tion 3 can be verified after some row and column transfor-
mations in the determinants.
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IV. EXPLICIT SOLUTIONS

In what follows, we shall apply the Darboux transforma-
tions to construct explicit solutions of the generalized Hirota-
Satsuma coupled Eq. (1) and the complex coupled KdV Egq.
2).

A. Explicit solutions of the generalized Hirota-Satsuma
coupled Eq. (1)

(1) Choose a trivial solution u=0,v=0,w=0 of the gen-
eralized Hirota-Satsuma coupled Eq. (1). Then Egs. (3) and
(4) are reduced to

{d)l,xx:)\qsl’ ¢l,t=2)\¢l,x’ ¢3= d)l,x’
¢2,xx == )\¢27 ¢2,t == 2)\¢2,x’ ¢4 = ¢2,x‘

Equation (25) has a fundamental matrix of solutions with
A=K,

(25)

exp(Ao) exp(=Ag) 0 0
0 0 sin By, cos B
| koexplag) —koexp(-49 0 o |
0 0 ko cos By — kg sin By

(26)
which together with Eq. (11) leads to (\;=k7,\,=k3)
- %’) sin B; —rg’) cos B;
Jexp(-4;)’

) exp(-A))]
) exp(-4)

o) =

exp(4;) - r
) k Aj)+
o) = [exp( ) r

s

exp(A4;) - r

o) = kj[r sin B, — r%’) cos B ]
exp(4;) — r1 exp( A )

j: 1925

where

A;=kx+2kt, Bi=kx-2kt, i=0,1,2.

According to the Darboux transformation Eq. (16), we get an
explicit solution of the generalized Hirota-Satsuma coupled

Eq. (1),

00, + 03

oo e o))
u= >
Do - 66D 1+ 6D 6D ]
e K-k (K2 + K3 (0P = o)
PO O O U<1>U<z>+0_1> o2’
W_z(kf-kg)a§1>a§2)+ (k} + 1) (a1 — aP o)
1) _ ;@ ool -

1) (2 2)*
I 10 g — oD

(27)
(2) Choose a trivial solution u=1,v=0,w=0 of the general-

ized Hirota-Satsuma coupled Eq. (1). Then Egs. (3) and (4)
are written as
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{¢lxx (1+)\)¢17 ¢lt
¢2xx (l )\)d’Z’ ¢2,t_
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(i) Let N=k(|ko| <1). Equation (28) has a fundamental matrix of solutions

exp(Ay) exp(—Ap)
0 0

0 0

which together with Eq. (11) gives rise to (A\;=k;,\y=k,),

G_ = ry exp(B ) - r3 ) exp(- B )
) exp(-A))

s

exp(4;) - r

_ /—exp(A )+ r1 ) exp(—A )
= exp(A ) - r1 exp( A )

(’) exp(B;) + rg exp( B )

0) =/ P
o V1 - k s =1,2,
3 / exp(A)—r1 exp(—4)) J
with
Ai= \”1 +k,x+ (Zk,— 1)\”1 +kl't, Bi= \‘”1 _kl'x_ (Zkl

+ DVl —kt, i=0,1,2.

By employing Darboux transformation (16), we get an ex-

sinh(A) cosh(4,)
0 0

0 0

which together with Eq. (11) gives [(\;=k;,\,=k,)]

0) g) sin C;— rg’) cos C;
o’ = ,
sinh(A) — r1 ) cosh(A )

G _ *cosh(A ) - r sinh(A )
o’ =1+
s1nh(A ) - rl cosh(A )’

V1 +kgexp(4g) — V1 + kg exp(—Ag)

CA=-Déd1,, 3=, (28)
- (2)\ + 1)¢2,x’ ¢4 = ¢2,x'
0 0
exp(By) exp(-— By) 20
0 0 ’ 29)

VI =k exp(By) — V1 -k exp(=By)

V1 + ko cosh(A4y) V1 + kg sinh(Ag)

plicit solution of the generalized Hirota-Satsuma coupled Eq.

(1),

ﬁ—1+2< (k; + k) (0} = o)) )
Dol — 0(1>Uz>+0<1> o)
G=_2 ky =k _ (ky + k) (05 @ (1))
OO RO O U<1>U<2> +oll - g
w_z(kl—kz)a§1>a§2>+ (ky + k) (ol o) — Pl
OO ool U<1>U<2>+0(1> o
(30)

(ii) Let N=ko(ko>1). Equation (28) has a fundamental
matrix of solutions

0 0
sin C cos Cy .
. . , (1)

P— [
Vkyg—1cos Cy —Vky—1sin C

(’)cosC+r sin C;
o) = \kj— 1- Loj=1,2,

- \’ b
3 sinh(A;) — r1 cosh(Aj)

where

A=+ kx+ 2k = DN+ kit,  Ci= k= 1x—(2k;

+ Dk —1t, i=0,1,2.
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According to the Darboux transformation (16), we get an explicit solution of the generalized Hirota-Satsuma coupled Eq. (1),

_ (ki + ky) (0} - (2))
E= 142 CE 0 00 4 ol - o0

O'(T+U'

5= ko—ky (ky + k) (05 = a3)
PO R I S 0(2) r ol gl
_ (ky - ky)aiVo'? . (ky + k) (a\Vo? — 2ol (32)
DR R (g (g g2

(iii) Let N=ky(ko<—1). We obtain a fundamental matrix of solutions of Eq. (28),

sin D cos Dy
0 0
b=

0 0

and (N ;=k;,\y=ky),

”_~ r2 smh(B ) - r3 cosh(Bj)
71 0)
sin D —rj’ cos D-

s

: V/Tcos D;+ r(lf) sin DJ
’sin D;- r%’) cos D

T %= r2 coshB —r3 smh(B)

\/1 — Ry s j = 1’2’
i sin Dj—r%’) cos D; /
where
Bi= \'l—kix—(Zk,»+1)\r _kit, D,»=V—1—k,-x

+(2k; = DV=1 -k,

An explicit solution of the generalized Hirota-Satsuma
coupled Eq. (1) is written as

i=0,1,2.

V=1—-kgcos Dy —\—1—-kysin D,

0 0
sinh(B) cosh(B)
, (33)
0 0
V1 = ko cosh(By) V1 — kg sinh(B)
[
_ 2( (ky +k2><a“>—o(ﬁ>> )
u=1+ s
0'(12)0'(21) gy 1)0' 2) + O' 0'(2) X
ey kL (ke - o))
ol _ o "G Uu)(,( )+ ol - g
(ki —k)aVe?  (k+ k) (00 - aP o)
w= + .
D_ g oDl _ U<1>U<2> +ol) - g@
(34)

(3) Choose a trivial solution u=1,v=0,w=1 of the gen-
eralized Hirota-Satsuma coupled Eq. (1). Then Egs. (3) and
(4) are reduced to

{¢1,xx=<1 NS BL=(h- D b3= i 5s)
Gr=d1+(1=Ns, ¢h2,=2¢ .~ 2N+ 1)y, dy=hy,.
(i) Let N=ko(|ko| <1). Equation (35) has a fundamental matrix of solutions
2ky exp(Ag) 2ky exp(—Ap) 0 0
exp(Ao) exp(=Ap) exp(B) exp(- By)
- ZkO\/TkO exp(4g) - 2k0y/TkO exp(—Ay) 0 0 ’ (36)
VI+kgexp(dg)  =T+kgexp(-4g) VT —kyexp(By) =1k exp(-By)

which together with Eq. (11) leads to (\;=k;, \,=k,),

(i) exp(B;) + r(j)

exp(- B))

|
0(1])=—(1—

2k; exp(4;) — rl exp(— A)

)’ 0-2

/—exp(A)+r1 exp(—=A))
Texp(A)) = exp(-4))”
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1 \,1+kj[exp(Aj)+r%i)exp( A)]+ V1 =k~ r exp(B)+r3 exp(— B)] 12
]= 94y

()

o) =—
3 2k; exp(4;) - r(’) exp(—A))
|
where G2 ky — ki (ky + k) (05 = o)
— — — =740 2) T4 @) 0 2 (1 2)°
.
- (2k;+ DN = k; =0,1,2.
(ki + D\V1 =k, i=0,1, . (ky = koo (ky + ) (000 — DD
Therefore, we get an explicit solution of the generalized w=1+2 0_(11) _ 0(12) + 0_(12) 0.(21) _ (11) (22) + 0_(31) _ 0%2)'
Hirota-Satsuma coupled Eq. (1), (37)
(1) (2)
=1 2( o ((]1{)1 A kﬁl)(oglz) a )) 2)) (ii) Let A=ko(kp>1). A fundamental matrix of solutions
010, -0 0, +03 x of Eq. (35) is written as
|
2k sinh(A) 2k cosh(Ap) 0 0
sinh(A,) cosh(A) sin Cy cos Cy
= — — , 38
2k0\'1 + ko COSh(AQ) 2k0 \/1 + ko Sinh(Ao) 0 0 ( )

V1 + ko cosh(A) V1 + kg sinh(Ag)  Vkg—1cos Cy — Vky—1 sin C

and we have (\;=k;,\,=k;)

(J) () ) _ g
1 ( ~ sin C; +r{’ cos CJ) (/)_ \/I_COSh(A) '"1 sinh(A))

OB
o1 2k; sinh(A;) — r1 ) cosh(A ;) ’ s1nh(A ) - r, cosh(A )’

G 1Vl [cosh(A)—r1 sinh(A;)] + Vk ~—1( rz cosC +r sinC_,-) 12
, Jj=1,2,where

a =
3 2k; smh(Aj)—rl cosh(A))

Ai:\1+kix+(2ki—1)\!1+kit, Ci: \"ki—lx—(Zkl-+1)\Jki—1l‘, l:O,l,2

By means of the Darboux transformation, we get an explicit solution of the generalized Hirota-Satsuma coupled Eq. (1)

_ (k, + k) (o} = o)
1+ 2

u=
0'(12)0'(1 0'(')0'(2) + 07 gy
5= ko—ky (ky + k) (05 = a3)
oD@ 2,0 Umga) PEOCL
w142l ~ kot oy bt K)o o~ oo (39)
ONE Pl g2 U( oD
iii) Let A=ky(ky<—1). Equation (35) has a fundamental matrix of solutions
(iii) o{Ko q
2k sin Dy 2k cos Dy 0 0
® sin Dy cos Dy sinh(B) cosh(By)
= — — , 40
2k0\—1—k0COSDO —Zko —1—k0 SinDO O 0 ( )
V=1= kg cos D, —V=1=kgsin Dy V1 —=kycosh(By) V1 —kqsinh(Bg)
and (N =k;,\,=k))
o) = L(l B r%’j sinh(B)) + r§ () cosh(Bj)) B \/_—_.cos D;+ r(’ sin D,
! 2k; sin D; — r%’) cos D; ' ’sin D;- rY) cos D; '
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G L N=1- ki(cos D; + r(’) sin D;) — V1 [rg’) cosh B; + r%]) sinh (B; )]

PHYSICAL REVIEW E 79, 056602 (2009)

T3 0k

where

Bi: \/1 —kix— (2ki+ 1)\”1 —kit, Di: N— 1 —kl’x+ (Zkl

—D\=1-kt, i=0,1,2.

Therefore, we get an explicit solution of the generalized
Hirota-Satsuma coupled Eq. (1)

(ky + kz)(O'(l) (2)) )
2)

0'(12)0'(21) 0'(1 0'(2 + 0(1)— o

ﬁ=1+2<

ky =k, (ki + k) (05 — a3))

R L B L I [

<
Il

exp(- By) exp(By)
0 0
| i exp(=By) —i& exp(By)
0 0
which together with Eq. (11) leads to
oy = expld) = exp(=Ay)

exp(- B)) - r(ll) exp(B))

@ _ _”2 exp( B)—V exp(B))
DT exp(an) - Y exp(- A7)

>

exp(= B}) + 11" exp(B})
1exp(— B)) - r(ll) exp(B})’

@ gkexp(A )+ Y exp(- AY)
oy =

2 Mexp(a}) - Y exp(- A

=i

(&2 - &)o't - o)

g sin D - r(’) cos D

j= 1’27

(k, —kz)(f(ll)‘f(lz)

0_(11) _ 0_(12)

(ky + k) (0¥ = o al)

w=1+2 .
0D — 0P 4 ol — g2

(41)

B. Explicit solutions of the complex coupled KdV Eq. (2)

It is obvious that (#,v)=(0,0) is a trivial solution of the
complex coupled KdV Eq. (2). In this case, Egs. (3) and (4)
are reduced to

{¢W= b bL=DbL. di=dy
¢2,xx == )\4)2’ ¢2,t == 2)\¢2,x’ ¢4 = ¢2,x’

with A=(i&))?. Then we have a fundamental matrix of solu-
tions of Eq. (42),

(42)

0 0
exp(A exp(—A
p(Ay) p(=A4p) ’ (43)
0 0
& exp(Ag) - & exp(-Ag)
|
UM r<2]) exp(A,) - rgl) exp(—A4))
3 " exp(- B) - 'V exp(B))
P ex (=B - P ex (By)
o= ie 2 p 1 3 pPLo;
3 b oexpAl) =i exp(-AT)
where
Aj=Ex+281 Bj=ifx-2iE1(j=0,1), X,
=(i&)% N=-\(&H=-i§).
1)
Utilizing the Darboux transformation and j,)
. AD
I G %_—rgz) we get an explicit solution

of the complex coupled KdV Eq. (2),

r$P|rV|cosh A, — iV Re Ay + 7 Re A,]

=2
(ng)gm DI

) 4( k116 V[P cosh A —
o).\ korV|FP)sinh A, + iy r2|AYsinh Ay + kY Tm Az + k0P Tm A,

) . (44)
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0_(22) _ O'gl)

1
_ 2, 2 2_ &2
U=—2(§T +§1) 1) (2)_2(§T _gl) (2) (1)
o — 0 g, 0, —

OIS e

exp(As) + i exp(= Ag) — 1! exp(Ag) — P exp(- Ag)

=2[(k))? - (ky)?
[( 1) ( 2) ]r§1)|r(12)|cosh Al—

rP1rVlcosh Ay = 5 Re Ay + 1§ Re A,

(& - i&)[exp(As) = VA exp(= As)] = (& + i&)[r" exp(A) = 17 exp(= Ag)]

+2K1K2 Q)

where
A1=1n|r(12)|—2ReA1, A2=ln|r(11)|+2Re Bl’ A3
= r(lz) exp(2i Im A)),

A4=r(11) exp(-2i Im B)), As=A]-B], A¢=A]

+BT, Re §1=K1, Im §1=K2.

A simple calculation shows that i given by Eq. (44) is a real
function. This means that iz, v determined by Egs. (44) and
(45) with w=0" (complex conjugate) is a complex solution
of the generalized Hirota-Satsuma coupled KdV Eq. (1).

V. CONCLUSIONS

In the present paper, we have given an approach to con-
struct a Darboux transformation for the generalized Hirota-
Satsuma coupled KdV equation based on a gauge transfor-

orD A2 sinh A + k72 A |sinh Ay + kY Im Ay + /P Im A,

) (45)

mation between the corresponding 4 X4 matrix spectral
problems with three potentials. Here the Darboux matrix 7 to
be suitably chosen is the key to construct the Darboux trans-
formation, by which the Lax pair of the generalized Hirota-
Satsuma coupled KdV equation is changed into another Lax
pair of the same type. A Darboux transformation of the com-
plex coupled KdV equation is obtained through the reduction
technique. As applications of Darboux transformations, some
explicit solutions of the generalized Hirota-Satsuma coupled
KdV equation and the complex coupled KdV equation are
given explicitly.
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